
AgentSpeak for UAV Development:
Towards a Technology Bridge

Marcelo T. Hama1,
Rafael H. Bordini1, Rodrigo S. Allgayer2

1 Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

2Departamento de Engenharia Elétrica
Universidade Federal do Rio Grande do Sul (UFRGS)

Abstract. We present the UAVAS framework (Unmanned Aerial Vehicles
AgentSpeak), a research related to UAV intelligence/behavior code development
in an agent oriented paradigm. The UAVAS framework model is derived from
the AgentSpeak runtime implemented in Jason IDE and hardware components
from the Mikrokopter project. The research intention is to customize an UAV
prototype to support AgentSpeak agents (extended agents from the Jason Archi-
tecture), which can reason about courses at action.

1. Introduction
Although the Unmanned aerial vehicle (UAV’s) existence cames from some long date, it’s
in the last decades that great advances has come in scene. Some of these advances are in
the field of artificial intelligence and complex behavior development. In this approach the
multi agent systems are taking key role in some researches around the world, with case
studies in path planning, cohesive/coordinated jobs, free-flights management, and others.
To support all of these scientific and technologic developments, the researchers are in de-
mand of specific IDE’s, platforms and tools. According to our findings, there’s some lack
for highly abstract languages, to develop complex AI and behaviors. In specific cases,
a good language/framework can be found, like JACK1, which is a mature agent-oriented
framework, but the problematic fact is that it’s a commercial tool and cannot be used with-
out bureaucracies/fees. In the academic area, we haven’t found any mature open-source
framework or language to support the UAV’s study with highly abstract programming
languages. Guided by this premisse, we are taking efforts in developing a framework sys-
tem, implemented in Java, and that uses a set of protocoled actions to serve as technology
bridge between the UAVs and AgentSpeak agent-oriented language. This protocol is to
be used in AgentSpeak codification to call the internal methods of the UAVs through the
encoding of actions to methods and signals to percepts. AgentSpeak is an agent oriented
language with open-source implementation and academic source [Rao 1996] (thus, with
plenty documentations). The experiments are in on-going phase and we are researching
technologic compatibilities, specific hardware intrinsic from Mikrokopter2 UAV’s project,
speech act semantics and agent oriented theory application. The remainder of this paper
is divided in 5 more sections. Section 2 does a brief recapitulation of the UAV’s recent
researches. Section 3 exposes the field’s problems and the proposed approach. Section 4

1JACK Intelligent Agents or JACK, is a framework in Java for multi-agent system development.
2The Mikrokopter project is an open-source project, with firmware available to public access.

does a brief introduction to Mikrokopter project and UAV technology. Section 5 presents
our current architecture model approach. Finally in section 6, we present some conclu-
sions and current work.

2. Recent Research
In this last decade, the research in avionic’s algorithm took important space in aca-
demic view. A recent categoy type of UAV’s research is the free flights, where avion-
ics are capable to make decisions about their own paths, in a dynamic way. In
[Pechoucek and Sislak 2009], the simulation of free-flights control/manager is a cited is-
sue with analisys of flight control, path planning. The flight plans are made by each
avionic by himself, with a contextual intelligence acquired by IA techniques. The sys-
tem’s behavior are studied and collision avoidances algorithms are implemented in-
side each UAV node, in a specific framework described in [Sislak et al. 2008]. Also,
for this same issue, there’s an approach in which deconfliction for collision avoidance
is treated as an negotiation between the UAV’s [Pechoucek et al. 2006]. Others re-
searchers [Ahmadzadeh et al. 2006] prefer a more formalistic view in multi-coordinated
path-planning, with mathematical programming development in an attempt to optimize
the logistic efficiency. To enable the tests, a testbed research laboratory described in
[Michael et al. 2010] has been equiped with motion capture sensors, allowing the treat-
ment of UAV’s moves to be controlled by high advanced image-processing software.
Using these same system of sensors, there’s an approach where the scenario is a 3D
city [Keller and Kumar 2008], in which the major objectives are the structures cover-
age. The multi-agent behavior context is also a very common citation in UAV’s research.
The analisys of coordination between coalitions [DeJong 2005] and large-scale dynam-
ics [Glinton et al. 2011] are research efforts to establishes a more predictable system in
chaotic systems with large numbers of agents. Path planning is another issue greatly
mentioned, involving much of mathematical graph theory [Jun and D’Andrea 2002] and
heuristics, both for unpredicted environments as for defined ones [Marsh 2005]. One
specific research applied to path planning is the issue of visual-field optimization and
efficiency [Kim and Crassidis 2010] with main concepts in trigonometry calculus. Yet,
others research fields that can be mentioned are autonomy, risks analysis, see-and-avoid
systems or networked coordination, being done in a good number of laboratories scat-
tered around the world, of which we can mention the Grasp Lab3 (Pennsylvania), Santos
Lab4 (Brazil) and Centaurus Technology5 (Malaysia). As we can see, the UAV artificial
intelligence and system behavioral approach applied to UAV are both becoming popular.
The special concept that all of these researches have in common is the very specific AI
for UAV’s. In this study type, there’s so much barriers and difficulties. Mainly, it’s in
the last decades that common people could acquire some of UAV prototypes due to more
accessible prices (sometimes, not so) and additionally, the technologies, softwares and in-
formations became more accessible. The UAV’s aren’t a trivial research area, and there’s
so much obstacles that researchers can find. We consider the UAV research a recent study
field and a hard-to-research area. Some reasons we can give to this difficulty in research
are put as follow.

3http://www.grasp.upenn.edu/
4http://www.santoslab.com.br/index.htm
5http://www.centaurustechnology.com/

http://www.grasp.upenn.edu/
http://www.santoslab.com.br/index.htm
http://www.centaurustechnology.com/

• Recent Technologies: As viewed early, UAV is an recent technology, wich makes
somewhat hard to find documentation, open-source projects or well developed
frameworks.
• Costly Hardware: In most cases, boards, softwares and eletronics are hard-to-find

and are very specific. Generally, an single UAV prototype shows an overwhelm-
ing cost (even that his cost had been dropped in this last decades) and very few
researchers can buy it.
• Top-Level Research Field: The UAV’s are constructed with a multi-technological

knowledge, which involves aeronautical engineering, computer sciences, eletron-
ics, image processings and others. This great number of skills means that it’s
hard to do significant progress with a little group of researchers or without direct
governmental help.
• Specific Areas For Tests: We can’t test UAV in open-civil areas due to the dangers

that the prototype can offer in some cases. Closed laboratories or open uninhabited
areas are generally the best choices to test these devices. Also, for some countries,
the researcher needs a permission to use the UAV.
• Software complexity: to program the behaviors of the devices, it’s necessary to

have a background in specific low-level programming languages, such Micro-C
or Assembly. The code that defines the behavioral characteristics of UAV’s aren’t
simple in such languages.

Yet, others issues like airworthiness, certifications, complex control architectures,
energy efficient, fail-safe systems, payloads care, navigation systems, security, smart sen-
sors, system integration and regulations aren’t trivial problems to solve. A great number
of pre-requisites must be achieved to enable the full development of the UAV’s technol-
ogy.

2.1. Agent Oriented Paradigm

A topic that’s becoming common in the citations of UAV’s area is the Agent Oriented
Paradigm applied to UAV’s. Multi-Agent System (MAS) is a sub-field [Shoham 1993]
area of Distributed Artificial Intelligence that focuses on study and research of software
that maintains states and autonomies in a universe populated by them. In a MAS, each
agent is known as one of its active entities, where a set of these entities form a multi-
agent society. In this context, an agent can be viewd as an UAV and so much interesting
experiments can be done with this paradigm. Usually, each agent has a set of behavioral
capabilities, a set of goals and an autonomy (intelligence) needed to use these behavioral
capacities. Decisions on what action to take are determined taking into consideration the
changes in the environment and the desire to achieve goals.

3. Lack of Tools and Abstraction Gap
In the research that we have done, we haven’t found any open-source agent-oriented lan-
guage that implement frameworks to UAV contexts, with academic perspective and open
source tools. We can state that the coding/programming for UAV’s development is very
complex in low-level languages. In view of these points, our focus with this research is to
create an open-source tool to study UAV’s, with specific environment and IDE’s. AgentS-
peak comes in hand because of it’s modern agent paradign, consistent semantics and de-
velopment suport. Also, we can mention that it has a free (open-source) implementation
called Jason [Bordini et al. 2007]. Jason is an open-source interpreter for AgentSpeak
language developed under the Java technology that is being implemented, extended and
studied by academic community in the last decades. Through an integrated API and an
IDE with a deliberative multi-agent runtime, multi-agent systems can be implemented,
opening up the possibility to research various topics of our daily, including avionics and
UAV’s. Some of the existing works that uses the Jason/AgentSpeak are the research of
virtual environemtns [Ricci et al. 2009] and team simulations6. AgentSpeak is an agent
oriented language to program multi-agent-systems and complex agent behaviors. A brief
description of this language is given below.

3.1. AgentSpeak: An Top-Level Language

AgentSpeak is a very popular agent-oriented programming language implemented in this
last decade [Bordini and Hubner 2006] as a tool to fulfil the gap between theoretic and
practical work in agent’s research. An AgentSpeak agent is defined [Alechina et al. 2006]
by a set of beliefs that gives the initial state of the agent’s belief base, which is a set of
logical atomic formulas (first-order), and a set of plans that are its library plans. An
AgentSpeak plan has a head that consists of a triggering event (specifying the events in
which this plan is relevant), and a conjunction of belief literals representing a context.
The conjunction of literals in the context must be a logical consequence of current beliefs
that the agent performs in the case that the plan is considered appropriate, given the time
that the triggering event happens (only applicable plans can be chosen for execution).
The plan also has a body, which is a sequence of basic actions or sub-goals that the agent
must perform to accomplish the plan. Basic actions represent atomic operations that the
agent can do to alter the environment in accordingly to his desires. These actions are
also written as atomic formulas, but using a set of stock symbols instead of symbols
of predicate. AgentSpeak distinguishes two types of goals: achievement goals and test
goals. Achievement goals are formed by an atomic formulas prefixed with the operator
{!}, while the test objectives are prefixed with the operator {?}. Plans (goals) are triggered
by the operators {+} (principal plans) or {-} (contingency plans).

6http://www.multiagentcontest.org/

3.2. AgentSpeak Applied to UAV’s Development
Thinking about the problems for UAV’s researches appointed earlier, our focus is in
direction of Multi-Agent Systems concepts applied to UAV’s, with main area in direction
of methodological development. Ou major objective is to create a system module for
UAV behavior programming powered with an Agent-Oriented Language, which could
enable more expressiveness in programming and coding with a top-level abstraction. In
this field, some works and attempts are in on-going research. Examples that can be cited
are the Automated WingMan [Wallis et al. 2002], where a framework in JACK agents
has been programmed in a model to work in UAV environmental paradigm, applying the
BDI model to such scope. A more generic methodological approach for UAV behavioral
design is in collaborations controlled by hierarchical rules [Dargar et al. 2002] to employ
the notions of task send/receive, path plannings and work partitioning. One can find
the question: why to use AgentSpeak? AgentSpeak is a well developed agent oriented
language, with formal operational semantics and a free-open source IDE (Jason). There
are other interesting languages like Jack, 3APL or Brahms but, in our point of view,
none of these languages match some of AgentSpeak’s carachteristics appointed above,
such as open-source implementations and good documentations. Below we show the
code, a codification in direct low-level C from the Mikrokopter project (described in next
section). This snippet adds a new waypoint7 to be achieved by the prototype.

u8 WPList Append (W a y p o i n t t ∗ pwp) {
i f (WPNumber < WPLISTLEN) {

memcpy(&WPList [WPNumber] , pwp , s i z e o f (W a y p o i n t t)) ;
WPNumber++;
NaviData . WaypointNumber = WPNumber ;
r e t u r n TRUE;

}
e l s e r e t u r n FALSE ;

}

C source code for adding a new waypoint. Font: http://gallery.mikrokopter.de/

In view of the great gap between behavioral coding and C/Assembly coding, our objective
is to minimize the abstraction gap and create an IDE for UAV’s behavioral development.
Methodologically speaking, we propose a way to do write code in AgentSpeak to help the
development of UAV systems, assisted by the moderm agent oriented paradigm.

4. MikroKopter Project
The MikroKopter is a technological UAV project that deploys a set of propelled proto-
types, with differente number of propellers and configurations. In all these configurations,
there’s three board modules in common, each of these doing a specific task. These boards
are:

Flight-Ctrl: The Flight-Ctrl takes care of the system and environment measurements
such as, angular velocity of the axes, acceleration, atmospheric pressure, evalua-
tions, battery voltage, processing and computing angular position and electronic
speed controllers. This board is distributed is versions v1.0 (green board) and v1.3
(red board). This board works with a Atmel ATMEGA644 20MHz (generally).

7In the Mikrokopter project, the waypoint is the definition to a geographical point where the UAV must
pass.

http://gallery.mikrokopter.de/

Navi-Ctrl: This board extends the functionalities of the Flight-Ctrl with GPS system
and coordinations managements. The features GoHome and HoldPosition is
available with this hardware.

Brushless-Ctrl: This board can be seen as an update since it diminishes interface errors,
interference risks and empowers the efficiency and performances.

Each board works with a signal protocol which is used by the system to “decode” and
manage the programmed instructions. In Figure 1 a four-propelled mikrocopter is shown.

Figure 1. Mikrocopter configured in a four propellor set. Font: http://gallery.
mikrokopter.de/main.php/v/Nachbau/z.JPG.html

5. The Proposed Framework

Working with the Mikrokopter technology, our aim is to create a agent runtime inside
each prototype, which will serve as platform to the system agents. The system agents will
extend the architecture of AgentSpeak/Jason agents, with implementation of a UAV based
communication protocol. This protocol is intended to offer signal decodification features
intrinsic of the mikrokopter platform extended with speech-acts, environment sensitive
functions and percept/act codification. The protocol purpose is to have functionalities
of a technologic bridge between AgentSpeak/Jason and an UAV. To run the system, an
additional hardware is intended to be inserted in the prototype with the specific task of
manage the system framework, exchanging signals with other hardwares via USB and/or
serial port. In Figure 2 we show the overall concept of the system model, and in Figure 3
the focused concept of the framework. The body-level represents the UAV structures as it
comes, composed by the Flight, Navi and brushless boards. This body will be in listener
mode with the other additional hardware. To support the runtime, an operational system
with Java interpreter libs (for the Jason agents) is intended to be chosen. Taking a close
look in the agent runtime engine, it encapsulates functionalities to encode/decode signals
to actions/percepts. The agent platform then manage these decoded signals and convert
then to a given protocol action. The current protocol version is described as follow (in
informal semantics):

http://gallery.mikrokopter.de/main.php/v/Nachbau/z.JPG.html
http://gallery.mikrokopter.de/main.php/v/Nachbau/z.JPG.html

Figure 2. System concept

Figure 3. Framework internal concept

5.1. Bridge Protocol

Logistic::MoveTo(Point) � This act add an objective to go to the given location, in the
shortest possible path.

Logistic::DoPatrol(List¡Point¿) � When this act is performed, for each point in the
given list and begining in the index 0, the agent executes the MoveTo act, assuming
as argument the indexed points in the list. When the final index is achieved, the
index is restarted to 0.

Logistic::GoHome() � Go to the pre-defined home point location, using the firmware
method.

Logistic::HoldPosition(Point) � Holds the position in the given point.
Illocutionary::Request(ToAgent,literal) � Sends a request to other agent, where the

passed literal is assumed to be false, and the other agent is requested to try to
make the literal true.

Illocutionary::Refuse(ToAgent) � Sends to other agent a ”deny operation”, related to
some received request act.

Illocutionary::Ask(ToAgent,literal(context)) � This act sends a “query” to the other
agent through a literal formulae.

Illocutionary::Reply(ToAgent,{TRUE|FALSE|UNKNOWN|literal(context)}) �
This act sends a reply to a given Asked/Request act. The reply value can be
”yes, no, don´t know, or a query”, encoded in ”TRUE, FALSE, UNKNOWN,
literal(context)”.

Illocutionary::Inform(ToAgent,Literal) � Sends to other agent the given literal. The
semantic is similar to replay, except that inform doesn’t need a request/ask to be
done before.

Sense::SenseClimatics() � Send a query to Flight-Ctrl and retrieve information (in form
of percepts) about wind speed, temperatures, accelerations, angles, and similar
issues.

Sense::SenseFuel() � Send a query to Flight-Ctrl and retrieve information (in form of
percepts) about battery voltage.

Sense::SensePosition() � Send a query to Navi-Ctrl and retrieve information (in form
of percepts) about GPS current position.

Internal::AddWayPoint(Point) � Add a waypoint localization, using the firmware
method.

Internal::SetHome(Point) � Set the given point as the home position.
Internal::Abort() � Aborts all intentions with priority equals or lower than 2.
Internal::Drop() � Aborts the last intention with priority equals or lower than 2.

These acts aren´t just procedures called by the UAVAS framework but agents intrinsic
methods that are called only by UAVAS agents. There are three main groups of acts:
logistics, illocutionaries and senses. The logistic acts purposes are to change the GPS
positional localization in some way. Illocutionary acts are methods that make possible
agents to send messages to each other. Sensing acts are methods to query the environment
or agent conditions. If the agent doesn’t have any intention, it assumes as default the
HoldPosition(LastPassedPoint) intention. The priorityLevel cited earlier (last 2 actions)
is an integer value, between 1 and 3, that defines the priority of the intention, where 3
value is for the most important, and 1 value to the lesser. Intentions that are in the same
level (with exception for the priority-3) are concurrent by nature. Only one intention
of priority 3 can exist in a given momment (priority-3 are singleton intentions), and if
other priority-3 is added, then it´s denied/discarded/ignored by the UAVAS agent. Yet, we
didn’t define the priorityLevel to be assigned to each act, and assume that this protocol is
a preliminar version that can be updated in a future moment.

6. Future and Current Work
Currently, we are working in three main directions:

• A UAV communication protocol to suport AgentSpeak code. This protocol is a
set of instructions described in KQML8 structures to enable AgentSpeak agents to
known specific received tasks.
• UAV’s Simulator. To test the agents behaviors developed in AgentSpeak, we are

working in a base simulator implementation where the environment is a virtual
airspace, and the possible commands are the protocol.
• Android agent platform. The main goal here is to develop a well-suited base where

the agents can run and receive/send messages. Some of the concerns are the im-
plementation of a Wi-Fi or BlueTooth mechanism to develop the communication
protocol, and the USB/Serial data send/receive to the UAV prototype.

At this moment, we are trying to make this initial framework run into a Beagle Board9

hardware fixed in the UAV prototype, and above it the Jason runtime with the AgentS-
peak agents. The main platform chosed to implement the first version of the proposed
framework is the Google Mobile Platform, Android because of it’s compatibility with the
Beagle Board, Java interpretation and low energy consumption. In Figure 4 the proposed
framework architecture at glance. The selection of Android Platform was made taking in

Figure 4. Framework architecture at glance

view our objective to use open-source tools. Although AgentSpeak/Jason is a free IDE,
currently there’s no plugin or implementaion that make possible to work with others plat-
forms such J2ME (a more suitable platform). For now, the Android platform are helping
us in view of it’s technologic compatibility, light-weight runtime and open sources. Also,
for this first version, we are not taking in view the energy/battery consumption rates. For
this first moment, due to lack of time, these research has been left to an future moment.
Future work in this research could come from various directions. Some possible direc-
tions are in the implementation of plugins for Jason to work with this technologies, the
development of a IDE for UAV specific AgentSpeak codes in a consistent way for this
scope, efforts in this proposed framework to be technologically more fashionable, suit-
able and consistent and J2ME implementations.

8The Knowledge Query and Manipulation Language, or KQML, is a language and protocol for commu-
nication among software agents and knowledge-based systems.

9The Beagle Board is a low-power, low-cost single-board computer produced by Texas Instruments in
association with Digi-Key.

References

[Ahmadzadeh et al. 2006] Ahmadzadeh, A., Keller, J., Jadbabaie, A., and Kumar, V. (2006).
Multi-uav cooperative surveillance with spatio-temporal specifications. Proceedings of
the 45th IEEE Conference on Decision and Control, pages 5293–5298.

[Alechina et al. 2006] Alechina, N., Bordini, R. H., Hubner, J. F., Jago, M., and Logan,
B. (2006). Automating belief revision for agentspeak. International Workshop on
Declarative Agent Languages and Technologies, page 16.

[Bordini and Hubner 2006] Bordini, R. and Hubner, J. (2006). Bdi agent programming in
agentspeak using jason. Computational Logic in Multi-Agent Systems, pages 143 –
164.

[Bordini et al. 2007] Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Program-
ming Multi-Agent Systems in AgentSpeak Using Jason. John Wiley and Sons, Ltd.

[Dargar et al. 2002] Dargar, A., Christensen, G., Kamel, A., and Nygard, K. E. (2002). An
agent-based framework for uav collaboration. Electronic Theses and Dissertations,
pages 54 – 59.

[DeJong 2005] DeJong, P. (2005). Coalition formation in multi-agent uav systems. Elec-
tronic Theses and Dissertations, page 113.

[Glinton et al. 2011] Glinton, R., Scerri, P., and Sycara, K. (2011). An investigation of the
vulnerabilities of scale invariant dynamics in large teams. Autonomous Agents And
MultiAgent Systems, page 8.

[Jun and D’Andrea 2002] Jun, M. and D’Andrea, R. (2002). Path planning for unmanned
aerial vehicles in uncertain and adversarial environments. Cooperative Control: Mod-
els, Applications and Algorithms, pages 95–111.

[Keller and Kumar 2008] Keller, J. and Kumar, V. (2008). Ieee/rsj international conference
on intelligent robots and systems. Robotics and Automation Magazine, IEEE, pages
2750–2757.

[Kim and Crassidis 2010] Kim, J. and Crassidis, J. L. (2010). Uav path planning for maxi-
mum visibility of ground targets in an urban area. International Conference on Infor-
mation Fusion, page 7.

[Marsh 2005] Marsh, L. (2005). Multi-agent uav path planning. International Congress on
Modelling and Simulation Modelling and Simulation Society, pages 2188–2194.

[Michael et al. 2010] Michael, N., Mellinger, D., Lindsey, Q., and Kumar, V. (2010). The
grasp multiple micro uav testbed. Robotics and Automation Magazine, IEEE, pages
56–65.

[Pechoucek and Sislak 2009] Pechoucek, M. and Sislak, D. (2009). Agent-based approach
to free-flight planning, control, and simulation. IEEE Intelligent Systems, pages 14–17.

[Pechoucek et al. 2006] Pechoucek, M., Sislak, D., Pavlı́cek, D., and Uller, M. (2006). Au-
tonomous agents for air-traffic deconfliction. International Conference on Autonomous
Agents, pages 1498–1505.

[Rao 1996] Rao, A. S. (1996). Agentspeak(l): Bdi agents speak out in a logical computable
language. European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, pages 42 – 55.

[Ricci et al. 2009] Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009). Environment
programming in cartago. Multi-Agent Programming, page 259.

[Shoham 1993] Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence,
pages 51 – 92.

[Sislak et al. 2008] Sislak, D., Pechoucek, M., Volf, P., Pavlicek, D., Samek, J., Marik, V.,
and Losiewicz, P. (2008). Agentfly: Towards multi-agent technology in free flight
air traffic control. Whitestein Series in Software Agent Technologies and Autonomic
Computing, pages 73–96.

[Wallis et al. 2002] Wallis, P., Rönnquist, R., Jarvis, D., and Lucas, A. (2002). The auto-
mated wingman - using jack intelligent agents for unmanned autonomous. Aerospace
Conference Proceedings, pages 2615 – 2622.

	Introduction
	Recent Research
	Agent Oriented Paradigm

	Lack of Tools and Abstraction Gap
	AgentSpeak: An Top-Level Language
	AgentSpeak Applied to UAV's Development

	MikroKopter Project
	The Proposed Framework
	Bridge Protocol

	Future and Current Work

